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SUMMARY

This study is concerned with the mathematical modelling of the motion of arthropod filiform hairs in
general, and of spider trichobothria specifically, in oscillating air flows. Analysis of the behaviour of hair
motion is based on numerical calculations of the equation for conservation of hair angular momentum. In
this equation the air-induced drag and virtual mass forces driving the hair about the point of attachment
to the substrate are both significant and require a correct prescription of the air velocity. Two biologically
significant cases are considered. In one the air oscillates parallel to the axis of the cylindrical substrate
supporting the hair. In the other the air oscillates normal to that axis. It is shown that the relative
orientation between the respective directions of the air motion and the substrate axis has a marked effect
on the magnitudes of hair displacement, velocity and acceleration but not on the resonance frequency of
the hair. It is also shown that the variation of velocity with distance from the substrate depends on the
value of the parameter ResSts, the product of the Reynolds number and the Strouhal number
characterizing the motion of air past the substrate. In the case of air motion parallel to the substrate axis
the analytical result derived by Stokes (1851), for a fluid oscillating along a flat surface of infinite extent,
applies if Res Sts> 10 or, equivalently, if fD?/v>20/r where f is the air oscillation frequency, D the
substrate diameter and v the kinematic viscosity of the air. In contrast, in the case of air motion
perpendicular to the substrate axis Stokes’ (1851) analysis never applies due to a substrate curvature
dependence of the velocity profile for all biologically significant values of Res Sts. Present theoretical
considerations point to a new method for simultaneously determining R, the damping constant, and S,
the torsional restoring constant of a filiform hair from measurements of the phase difference between hair
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displacement and air velocity as a function of the air oscillation frequency. For the filiform hairs of
crickets we find from the data available that S=0(10"') Nm rad~! and R=0(10"'%) Nmsrad~'. All
major qualitative aspects of known hair motion in response to air motion are correctly predicted by the

numerical model.

1. INTRODUCTION
(a) The problem of interest

Filiform hairs are mechanoreceptive sensilla located
on the integument of various terrestrial arthropods,
well known examples being crickets, cockroaches,
caterpillars, spiders and scorpions. They are called
trichobothria in arachnids and are found on the
walking legs and pedipalps of all true spiders. As
displacement transducers they are extremely sensitive
to the motion of the air. The general morphology and
functional properties of arthropod mechanoreceptive
hair sensilla, including the trichobothria, have been
summarized by Barth & Blickhan (1984) and a review
of research on arachnid trichobothria has been given
by ReiBland & Gorner (1985). These authors discuss
some of the earlier work by Tautz (1977, 1979) and
ReiBlland & Gorner (1978) who have investigated the
mechanoreceptive characteristics of the thoracal hairs
of caterpillars and the trichobothria of web spiders,
respectively.

In this study we are concerned with the mathemati-
cal modelling of the oscillatory motion of filiform hairs
in all arthropods, irrespective of the fluid medium (air
or water) inducing the oscillations. However, it serves
the objectives of this paper to focus attention primarily
on spider trichobothria oscillating in air. In a compa-
nion paper, Barth et al. (1993) provide details of the
arrangement, fine anatomy, and mechanical proper-
ties of the trichobothria on Cupiennius salei spiders. As
will be shown, the geometry, physical properties and
flow conditions underpinning the trichobothrium
model developed here can all be readily altered to
accommodate the geometrical and dynamical charac-
teristics of arbitrary hair—substrate fluid flow configu-
rations.

(b) Objectives of this contribution

After providing the necessary theoretical back-
ground, in § 2 it will be shown in the review of earlier
work that all previous attempts to model the dynamics
of filiform hairs in arthropods have failed to do so in a
consistent and accurate manner in spite of the avail-
ability of the necessary theory. It is the purpose of this
study to redress this situation by accomplishing several
related objectives. These are to:

1. Provide a consistently derived equation of motion
which accurately represents the dynamics of an oscil-
lating filiform hair. Among various requirements, the
solution to this equation should account for the
influence of both hair curvature and substrate curva-
ture on hair motion.

2. Apply theoretical analysis to this equation of
motion in order to delineate an experimental metho-
dology for simultaneously determining numerical

Phil. Trans. R. Soc. Lond. B (1993)

values for the restoring and damping constants, $ and
R of a filiform hair. The analytical results of this
activity serve to identify the type and accuracy of
experimental data required to determine § and R.
They also allow an evaluation of the suitability of data
already in the literature that could serve this purpose.
3. Outline and apply a numerical methodology for
solving the equation of motion for the hair subject to
accurate expressions for the velocity of the air, includ-
ing the effects of substrate curvature and viscous
shear. For this, we focus on the characteristics of an
oscillatory motion with zero mean net flow and
investigate the relevant parameters affecting hair
motion.

The availability of a mathematical model accu-
rately describing fluid-driven hair motion begs its
application to investigate the response of filiform hairs
exposed to fluid flow conditions of biological interest.
In this regard it is of special interest to establish the
connections among: (i) hair structure and physical
properties; (ii) air flow stimuli; and (iii) animal
behavioural response. These and related points are
considered in more detail in the companion paper by
Barth et al. (1993).

In concluding this section we note that this commu-
nication has been written with the biologist, as reader,
primarily in mind. Thus, we have put more effort into
clarifying all major physico-mathematical concepts
necessary for understanding the model than would be
required by a more mathematically oriented reader-
ship. This, we hope, will encourage and assist biolo-
gists to use the model with confidence. Throughout
the paper we distinguish between the meanings
attributed to ‘analytical procedures or results’ and
‘numerical procedures or results’. By the former we
refer to the application of theoretical procedures that
allow the derivation of analytical solutions in closed
form for the equations of interest; that is, completely
general solutions expressible purely in terms of, for
example, algebraic and transcendental functions. By
the latter we mean the application of finite difference
procedures, encoded in the form of computer algor-
ithms, that yield specific numerical solutions for the
same or related equations.

2. MODELLING HAIR MOTION
(a) The geometrical approximations

The insert in figure 1, from Barth et al. (1993), shows
typical arrangements of trichobothria on a segment of
the meta-tarsus of a Cupiennius sale: spider leg. Only
the trichobothria are shown but, in reality, each
trichobothrium projects at about 90° to the leg surface
through a dense arrangement of relatively stiff hairs
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1 mm

Figure 1. Showing the geometrical approximation made in
this study to model the motion of a curved trichobothrium of
diameter d projecting from a Cupiennius salei spider leg of
diameter D. For a straight hair Z;=0. The insert, from
Barth et al. (1992), shows typical arrangements of tricho-
bothria on a segment of the meta-tarsus of a Cupiennius
spider.

which are insensitive to air motion and which possess
other functions such as tactile or chemoreceptive. In
addition to innervated cuticular hairs, a carpet of
small non-innervated hairs covers the spider integu-
ment.

Both the trichobothria clusters and the individual
sensilla composing them present clearly recognizable
and repeatable structural patterns. The dorsal view of
an entire spider leg, provided in Barth et al. (1993),
shows that along its length the trichobothria clusters
on the tarsus and metatarsus, as well as some tricho-
bothria on the tibia, are contained in a common plane
which passes through the longitudinal axis of the leg.
From base to tip, the hairs range in length between
100 and 1500 pm, approximately. In each cluster the
hairs are arranged so that the longest are located
distally along the leg. The longest hairs are also the
most strongly curved at the tip, with the tip of the hair
always directed proximally. Individual hair diameters
vary, from a maximum at the base of the hair to a
minimum at the tip, giving the hairs the appearance
of elongated curved cones. Average hair diameters
range from 5 pum for the short hairs to 15 um for the
long. This yields values of hair length to diameter
ratios, L/d, ranging between 20 and 100. The distance
between hairs ranges from about 50 to 500 pm for the
clusters located on the meta-tarsus and tibia. This
yields values of hair spacing to diameter ratios, &/d,
ranging between 10 and 100, approximately.

For the purposes of this paper, which emphasizes
the mathematical modelling of the air-driven motion
of filiform hairs in general, and trichobothria in
particular, it is necessary to define a simplified
geometry representing a single hair and its substrate.
Figure 1 shows the geometrical approximation made

Phil. Trans. R. Soc. Lond. B (1993)
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in this study for a curved trichobothrium projecting
from a Cupiennius salei leg of diameter D. The entire
hair unit is deflected about the point of attachment to
the substrate when driven by air oscillations. The hair
is modelled as an inflexible smooth cylinder of con-
stant effective diameter d, with a right-angle bend
near its tip in order to capture the qualitative
influence of hair curvature on hair motion. The sum
of the two lengths of this cylinder, L; + Ly, is equal to
the total length, L, of the real hair. The cylindrical
model for the hair may be taken as solid or as hollow,
with all solid portions of the hair assumed to be
homogeneous and of density pp.i-= 1100 kg m~3 (Shi-
mozawa & Kanou 1984).

The immobile leg supporting the hair is also
approximated as a cylinder, but of much larger
diameter than the hair. The precise topological details
of the various hairs on the leg are ignored when
assessing the influence of the leg on the air flowing
past it. Instead, the leg and its hairy surface are
combined into an equivalent cylindrical substrate of
effective diameter, D. This means that the substrate is
viewed as a smooth cylinder in so far as a filiform hair
projecting from it is concerned. Typically, Barth et al.
(1993) find D/d=200, for an adult Cupiennius sale:.

For a straight hair, such as a filiform hair on a
cricket cercus, we would take Ly=0 in the present
geometrical model and, if it were shown to be critical,
the hair would be approximated as a cone instead of a
cylinder to find its moment of inertia. However, such a
practice introduces a modelling inconsistency present
in earlier works such as, for example, Fletcher (1978)
and Shimozawa & Kanou (1984) which we have
chosen to avoid. Relatively simple analytical relations
from which to calculate the stress-induced fluid forces
acting on a cone as a function of its length are not
known as they are for a cylinder. Therefore, it is more
consistent to model the hair as a cylinder of effective
or average diameter, d, for the determination of both
the fluid forces and the moment of inertia. The notion
of an effective diameter is also consistent with the
following separate consideration. For the low values of
the Reynolds number typical of hair motions (Re<1,
with Re as defined in equation (5)), the detailed
topological characteristics of the structures composing
the hair surface are unimportant for determining the

hair’s moment of inertia and the bulk fluid forces
acting upon it as long as the structures are evenly

distributed and the spaces between them are smaller
than the structures themselves; that is, as long as the
structures are uniformly and closely packed. Close
packing, as found in trichobothria (see Barth et al.
1993), precludes any significant fluid motion in the
spaces between structures thus allowing any hair to be
viewed as a smooth cylinder of effective diameter d.

(b) Equation of motion for the hair

For the discussion of earlier work, and for the
numerical caleulation of hair motion in this study, the
principle of the conservation of angular momentum is
applied to the geometry approximating a bent filiform
hair with respect to the point about which it oscillates
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R,U
OVI|ZW,

Figure 2. Configuration for the case of air flow oscillating
parallel to the longitudinal axis (Z-axis) of the spider leg.
The coordinate system and velocity components are as
indicated although, in this case, the radial (U) and
circumferential (V) velocity components are respectively
zero.

on the substrate. Two biologically meaningful situa-
tions of fundamental interest are shown in figures 2
and 3. Figure 2 corresponds to an air flow oscillating
parallel to the longitudinal axis (Z-axis) of the
substrate. Figure 3 corresponds to an air flow oscillat-
ing perpendicular to that axis. The angular displace-
ments, 0, shown for the hairs in these two figures are
exaggerated because, generally, 0<10° suffices to
stimulate action potentials in spiders (Barth et al.
1993) and 6 < 1° suffices to stimulate action potentials
in crickets (Shimozawa & Kanou 1984).

In both of the configurations shown in figures 2 and
3 the conservation of angular momentum for the hair
is given by

0= —RO— S0+ Tp+ Tum, (1)

where I (N m s? rad~!) is the moment of inertia of the
hair with respect to the axis of rotation, R (N m s rad ~1)
is the damping constant, S (N mrad~!) is the torsio-
nal restoring constant, 8 (rad) is the angular displace-
ment of the L; cyclinder segment attached to the
substrate with respect to its equilibrium orientation,

R,U,
(GA% Z

W,

Figure 3. Configuration for the case of air flow oscillating
perpendicular to the longitudinal axis (Z-axis) of the spider
leg. The coordinate system and velocity components are as
indicated although, in this case, the longitudinal (W)
velocity component is zero.

forced damped harmonic oscillator and it provides the
theoretical foundation underpinning the numerical
model for hair motion in the present study. In simpler
forms it has been used by Fletcher (1978) and
Shimozawa & Kanou (1984) for the same purpose.
Equation (1) states that the rate of change of angular
momentum of the hair is due to four contributions
composing the total torque acting upon it. In order of
appearance on the right hand side of the equation
these are: (i) the frictional torque, arising at the
rotation point of the hair; (ii) the restoring torque,
also arising at the rotation point of the hair; (iii) the
torque, Tp, arising due to fluid-induced stress forces
(form and frictional drag) acting along the length of
the hair; and (iv) the torque, Ty, associated with the
added (or virtual) mass of fluid (for the trichobothria,
air) which at any instant must be accelerated along
with the hair. Of these torques, the first two always
work to oppose hair deflection.

The quantities R and § in equation (1) must be
obtained from experimentation with real hairs and we
discuss how this can be achieved in § 5. The moment
of inertia, I, of the hair is most conveniently evaluated
using the parallel axis theorem. For homogeneously
solid hairs the expressions required are:

1. For the hair in the configuration of figure 2,
corresponding to the fluid oscillating parallel to the
longitudinal axis of the cylindrical substrate:

I = (rpnad?/48) (Ly (4L2 + (3/4) &) + Ly(12 L2 + (3/4) d® + L)). (2a)

and the superscript dots over 6 denote differentiation
with respect to time.
Equation (1) is the equation of motion for a simple

2. For the hair in the configuration of figure 3,
corresponding to the fluid oscillating perpendicular to
the longitudinal axis of the cylindrical substrate:

= (npnd®[48) (Ly (4 LT + (3/4) d*) + Ly (12 LT + (3/2) d%).  (2b)

Phil. Trans. R. Soc. Lond. B (1993)
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The moments of inertia for hollow hairs are also given
by equations (2a,2b) if one subtracts from them
identical expressions wherein the quantity 4 is substi-
tuted for di,, the inner diameter corresponding to the
hollow portion of the hair.

The torques 7p and Ty are obtained by integrat-
ing the fluid-induced drag and added mass forces
acting along the total length, L= L;+ Ly, of the hair.
Calling Fp and Fym the drag and added mass forces
per unit length respectively acting on the hair, it
follows that

L Ly
Tp= [Foydy + [Fp Ly dx, (3)
(1] (1]
and
L, Ly
Tym = j.FVM ydy + j.FVM L, dx. 4)
0 0

The forms of equations (3) and (4) imply that the
drag and added mass forces respectively acting on the
L; and Ly segments of the hair are additive and that
flow field interference effects where the two segments
join are negligible. The assumption is reasonable as
long as both L;/d> 1 and Lg/d>1 as in the case of
many trichobothria (Barth et al. 1993).

Together with appropriately specified physical
properties and 1nitial conditions, equations (1-4)
determine the motion of a bent hair, or of a straight
hair when Ly =0. Experimentally validated theoretical
expressions for Fp and Fym, applicable to a fluid
oscillating perpendicular to the L; and Lz segments of
a hair have been derived by Stokes (1851). Corres-
ponding expressions applicable to a fluid oscillating
parallel to the Ly segment of a hair have been derived
by us (and others).

The main constraints to be satisfied in Stokes’
(1851) theory for a fluid oscillating perpendicular to a
cylinder are that the cylinder length to diameter ratio
should be L/d> 1, and that the Reynolds number of
the flow at any location along the cylinder, defined
here as

Re =V, d|2 plu, (3)

should be Re< 1. Of these two constraints only the first
applies to the theory for a fluid oscillating parallel to a
cylinder provided the motion remains laminar. Using
the data for trichobothria in Barth et a/l. (1993) and
that for the filiform hairs of crickets in Kdmper &
Kleindienst (1990), we have verified that these con-
straints are readily satisfied for all the hair and air
flow conditions of interest to this study. In equation
(5), d is the hair diameter while p and u are the fluid
density and dynamic viscosity, respectively. In this
study the values p=1.1774 kg m~3 and u=1.8462
10-5kg m~!s~!, corresponding to air at 27°C, have
been used throughout. (The symbol for the kinematic
viscosity, v=pu/p, is also used in this paper.) The
quantity V,=Vr— V¢ is the local relative velocity
given by the difference between the fluid velocity, Vr,
and the velocity of the cylinder itself, Vo=y 0, at any
position along its length. It is important to note the
following. For the L; cyclindrical hair segments shown

Phal. Trans. R. Soc. Lond. B (1993)
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in figures 2 and 3, and for the Ly segment shown in
figure 3, Vp is the component of fluid velocity
perpendicular to those segments. For the Ly segment
shown in figure 2, Vr is the component of fluid velocity
parallel to Ly. In practice, for small angular displace-
ments of the hairs (0<10°) Vg is essentially the
component of fluid velocity parallel to the substrate at
the position in question.

1. For the case of a fluid oscillating perpendicular
to a cylindrical hair segment: the expressions derived
for Fp and Fyym by Stokes (1851) are

Fhb=4npGV, (6)
and
Fyy= — (rpGV,[2¢f) +mp (d[2)* V. (7)

In these expressions V, is the time rate of change of V.,
at any position along the length of the hair and f'is the
frequency of flow oscillation, in Hz. For values of the
dimensionless parameter

s = (d/4) /)% (®)
such that s<1, Stokes (1851) shows that

g=0.577 + Ins, (9)
and

G=—g/(g"+ (n/4)?). (10)
Using the value of v for air at 27°, and of d for the
trichobothria of spiders (Barth et al. 1993) and the
filiform hairs of crickets (Kdmper & Kleindienst 1990)
it is readily shown that the requirement that s< 1 will
be satisfied as long as f< 10% Hz. Also, for conditions
involving oscillating air flows, the second term on the
right hand side of equation (7) is generally much
smaller that the first. However, such is not the case for
hairs oscillating in water as its density is about 1000
times that of air. Because we are interested in a
generally applicable model, the second term has been
retained in the numerical formulation.

2. For the case of a fluid oscillating parallel to a
cylindrical hair segment: expressions for Fp and Fyym
have been derived in the same way as done by Stokes
(1851), from the velocity distribution obtained in § 3a.
The analysis in § 3a is for a flow oscillating parallel to
a very long cylinder of diameter D. The results also
apply to the flow oscillating parallel to a cylindrical
hair segment of length L, and diameter d if Ly/d> 1.
The expressions required are

Fp = 27 p REAL <,\ /W V,),
Ko (N)

and

7 Ko (V) (12)

K (A)
Foy = — EREAL <i)\ 1 () K>,
where A=2 5 12, i= (—1)!2 is the imaginary unit and
REAL denotes the real part of the expression in
complex notation contained in the parentheses. The
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quantities Ky and K; are modified Bessel functions of
the second kind which can be evaluated from series
expressions available in, for example, Abramowitz &
Stegun (1970).

With the above expressions for Fp and Fyy,
equation (1) can be rewritten in a form better suited
for calculating the configurations shown in figures 2
and 3, respectively. The result is

I+L+5L)0+R+R +R)0O+ 56

Filiform hair and air motions

this is not true, because the velocity and acceleration
of the air at the base of the hair are very small, and
therefore the associated flow-induced contributions
to the torque also small, the departure from two-
dimensionality can be safely ignored.

(c) Earlier work

It appears that Tautz (1977) was the first to

Ly L
- (jz)l Veydy + Dy Vily—r, Lt L2> + <5VM1VFydy + VM, Vely— 1, Ly L2>, (13)
0 0

where the symbol ‘|y:L1’ means ‘evaluated at y=1L,".
The other new symbols in equation (13) are defined as
follows:

I. For the hair in the configuration of figure 2,
corresponding to the fluid oscillating parallel to the
longitudinal axis of the cylindrical substrate:

L=—=uGLY6gf+np (d2)* LY,
R =4/37uG L3
D, = 4rn p G,

VM, = —wuGJ2gf+ = p (d]2)%

where

AKQ)
= —————with A, K, and K as defined above.
Ky()
2. For the hair in the configuration of figure 3,
corresponding to the fluid oscillating perpendicular to
the longitudinal axis of the cyclindrical substrate:

L=—npGLi[6gf+mp (d2)* L[3,
R =437nuGLE
D, =4r puG,
VM; = —mp G2 g f+ = p (d]2),

In equations (13-15) the quantities subscribed ‘1’
pertain to segment L; of the hair and the quantities
subscribed ‘2’ pertain to segment Ly. Specifically, [;
and Ip represent moments of inertia associated with
the added masses of fluid moving with the L; and Ly
segments of a hair, respectively. Similarly, the R, and
Ry terms have been written to appear as additional
damping factors associated with viscous fluid forces
acting on these segments.

Together with the quantities defined by equations
(14) and (15), equation (13) will simulate hair motion
accurately provided the hair can be represented by
an effective cylinder of total length L and diameter d
such that L/d> 1 and Re<1. These requirements are
readily satisfied for all the filiform hairs and flow
conditions of interest to this work. It is tacitly assumed
that the flow past the hair retains a two-dimensional
character all the way to its base. While we know that

Phil. Trans. R. Soc. Lond. B (1993)

propose the idea of modelling filiform hairs as forced
damped harmonic oscillators for establishing the
dynamic characteristics of thoracal hairs in caterpil-
lars. He did not perform a torque balance along the
lines of equation (1) to determine the precise form of
hair motion. Instead, he used theoretical concepts
pertaining to externally forced damped harmonic

L= — (u L? L{f) REAL [ik],
R, = 2= u L2 L, REAL [£],
Dy = 2 REAL [#],

VM, = — (ulf) REAL [ik].

(14)

motion to interpret measurements of hair and air
element displacements versus frequency. From his
analysis Tautz (1977) concluded that the ratio of hair

L=—nmpGLL[2¢f+ = p (d)2)® L] Ly,
Ry = 4m u G L} Ly,
Dy = 4n G,

VMy = — 7 uG|2 g f + =p (d]2)%

(15)

tip displacement to air element displacement is two,
at most, at a hair resonance frequency of 100 Hz,
approximately. Experimentally, he established that at
about this frequency the motion of a hair lags that of
the air by approximately 90°. From his measurements
Tautz (1977) also indirectly confirmed the constancy
of the torsional restoring constant, S, for hair deflec-
tion angles 0 <10°, but neither § nor the damping
constant, R, were determined.

In his study, Tautz (1977) did not concern himself
with the fluid forces due to drag and added mass
acting on a hair. In fact, he claimed . . . ‘It is not
possible to determine the nature of the driving force
theoretically for a hair vibrating in air.” We now know
that this statement is incorrect. Although Tautz’s
(1977) analysis does not allow the establishment of a
direct connection between oscillating air motion and
the mechanical behaviour of the hairs which the air
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motion affects, it is seminal for two reasons: (i) it
establishes the biological significance of air medium
vibration reception by filiform hairs in caterpillars,
which are mechanically tuned to a frequency range of
biological importance; and (ii) it points the way for
the mathematical modelling of hair motion in general,
as discussed next.

Fletcher (1978) and Shimozawa & Kanou (1984)
have developed mathematical models of hair motion
based on refined interpretations of Tautz’s (1977)
externally forced damped harmonic oscillator concept.
These studies have respectively served as bases for
interpreting some of the findings in subsequent investi-
gations performed by Tautz (1979), Kimper &
Kleindienst (1990) and others. Both Fletcher (1978)
and Shimozawa & Kanou (1984) improved upon
Tautz’s (1977) model by making the driving force in
the equation of motion for the hair a function of the
characteristics of an oscillatory motion with zero mean
net flow. However, there are some noteworthy differ-
ences between these two studies and, unfortunately,
both appear to have incurred serious errors or invoked
unnecessary limitations which significantly affect the
validity and usefulness of their respective results.
Notwithstanding, the modelling concepts advanced
by these authors have greatly benefited the present
investigation.

In attempting to explain some of the finer features
of Tautz’s (1977) data, Fletcher (1978) modelled the
fluid mechanics aspects of oscillatory hair motion
approximating the hair as a cone to obtain its moment
of inertia. However, he applied a drag relation
appropriate to a straight cylinder to evaluate the fluid
forces associated with the viscosity and inertia of the
air medium. The latter is precisely the problem on the
motion of pendulums solved much earlier by Stokes
(1851) in the classical paper referred to in § 24. In
Fletcher’s (1978) study the hair was taken to oscillate
about a point on a flat substrate with the direction of
the air oscillations aligned parallel to the substrate.
However, the substrate was presumed to have no
viscous damping effect on the air motion. This was
equivalent to specifying a ‘slip’ boundary condition
for wvelocity at the air-substrate interface which,
although incorrect, conveniently allowed the imposi-
tion of a spatially homogeneous time dependent air
velocity profile.

In principle, Fletcher’s (1978) theoretical analysis is
based on equation (13) with Ly=0. Fletcher (1978)
used the results from Stokes’ (1851) analysis for the
values of Fp and Fym given by equations (6) and (7),
but he omitted a factor of 2= in equation (6) and
incorrectly took Fp=2 u V. G which affects the analy-
tical results subsequently derived. The magnitude of
the 2= error can be appreciated by noting that the
inclusion of this factor in Fletcher’s (1978) analysis
yields 6,= —8.9° (instead of 45°) for the value of the
angle characterizing the phase lag between the forcing
function and the air velocity as defined by Fletcher
(1978). Another important consequence of correcting
the 2= error is that Fletcher’s (1978) approach will
then yield a factor of 1.5, instead of 2, for the ratio of
hair tip displacement to air element displacement for
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a hair forced to oscillate at or near to the value of its
undamped natural frequency. Finally, we note that
detailed numerical calculations performed by us (not
provided here) show that the omission of the 2r factor
incurs serious quantitative errors in the shapes and
magnitudes of the profiles for hair displacement,
velocity and acceleration when plotted as a function of
the forcing function frequency.

In an attempt to represent the damping effects of
viscosity on the shape and magnitude of the velocity
profile, Vg, for the air oscillating along the substrate,
Shimozawa & Kanou (1984) adapted the solution of
Stokes’ (1851) ‘second problem’ for the viscous motion
of a fluid near an oscillating flat surface of infinite
extent to the hair-substrate systems of interest to them,
i.e. filiform hairs on the cerci of crickets. Panton
(1984) provides a useful summary of Stokes’ second
problem as well as a proof concerning the adaptation
of its solution to the converse problem of a fluid
oscillating near a fixed flat surface. The analysis shows
that for a fluid oscillating parallel to and far away
from a flat surface with velocity U, sin (wf) (where U,
is the amplitude of the flow oscillation, @ =2 fis the
frequency in radians per second of the flow oscillation,
and ¢ is time) the instantaneous dimensionless fluid
velocity, at time ¢ and at a distance y perpendicular to
the surface, is given by
Vs, = v/U, = (sin(wt) — sin(wt — By) e~ ), (16)
where f=(0/2v)!? is a system parameter with dimen-
sions m~!. The location y=0s, from the surface where
viscous damping is detected as a 19, reduction in the
amplitude of the far field velocity oscillation is given
by
05, = 4.5/B = 4.5(v/nf)"2. (17)
Setting v for air at 27°C, equation (17) vyields
ds,=1006 pm for f=100Hz and Js5,=450 um for
f=500 Hz. From these results we anticipate that the
variation in the shape of the velocity profile with y,
due to substrate-induced viscous damping of air
motion, will affect the magnitudes of the drag and
added mass forces acting on hairs shorter than about
450 um when f<500 Hz, or acting on hairs shorter
than about 1000 pm when f< 100 Hz. The ways by
which substrate curvature and the presence of other
hairs can alter this finding are discussed in § 3.

The equation used by Shimozawa & Kanou (1984)
to model hair motion is also equation (13) with Ly=0
and the following restrictions:

1. The hair is approximated as a cone to calculate the
moment of inertia and as a cylinder to calculate the
drag.

2. All terms in the equation associated with the added
mass were neglected. This is equivalent to neglect-
ing the entire contribution of Tyym to the balance
expressed by equation (1).

3. The frequency dependence embedded in the coefhi-
cient G associated with the drag force, Fp, was
ignored. Instead, the authors assumed a pseudo-
steady flow past the hair and invoked an Oseen
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Figure 4. Plots of the virtual mass (7ym) (dotted line) and
viscous drag (7p) (dashed line) torques, and of the ratio y
(solid line) over one period of air motion at_f=100 Hz and
U,=5mms~! for a straight solid hair with d=7 pm,
L,;=500 pm, $=4x 10-2Nmrad-! and R=0.

relation for calculating the viscous drag. (The
reader is referred to White (1991) for an explana-
tion of the Oseen flow approximation.)

4. By adapting the solution to Stokes’ (1851) second
problem to the hair-substrate pair, the authors
precluded advancing any understanding of the
influence of substrate curvature on the motion of
the air and, consequently, on the motion of the
hair.

5. Experimentally determined values were used for
the torsional restoring constant, S, but, as in
Fletcher’s (1978) work, R=0 was assumed for the
damping factor inherent to the hair. Thus, the
detailed effects of this parameter on hair motion
remain unexplored.

We now comment on the effects of restrictions 2 and
3 on the prediction of hair motion. (The effects of
removing restrictions 4 and 5 are more appropriately
illustrated and discussed in § 6.) The general question,
implied in Tautz’s (1979) study, concerning the
relative importance of all the forces (or torques)
affecting hair motion is then addressed. We note that
various errors in the paper by Shimozawa & Kanou
(1984) were subsequently clarified in the paper by
Kamper & Kleindienst (1990).

(i) The importance of the virtual mass torque

The fallacy of neglecting the contribution of 7Ty to
the balance expressed by equation (1) is best demon-
strated by performing numerical calculations with and
without this term in the model. We have done this and
conclude that for conditions of biological interest,
both in air and water, the neglect of Tvy induces
significant errors in the calculations of the magnitudes
of hair displacement, velocity and acceleration, res-
pectively. Theoretical considerations readily show
why this is the case.

Equation (13) admits an analytical solution (see
Appendix 1) for the angular displacement, 0, of a
straight hair projecting perpendicular to a flat sub-
strate immersed in an oscillating air flow with velocity
distribution given by equation (16). This is precisely
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the problem solved numerically by Shimozawa &
Kanou (1984), but neglecting the added mass terms
which we have retained. With analytical expressions
available for Vp and 0 as a function of the relevant
parameters it is a simple matter to obtain correspond-
ing expressions for Tyy and T, provided in Appen-
dix 1. Plots of these two quantities and of the ratio
y=|TVM|/(|TVM|+|TD|) are shown in figure 4. The
plots cover one period of motion for a typical solid
filiform hair oscillating at f=100 Hz in a sinusoidal
air flow field with U,=5 mm s~1. The results reflect
the well known fact that the drag and virtual mass
forces, Fp and Fyy, are out of phase by 90°. They also
show that over most of the oscillation cycle y > 109%,.
From this and additional calculations for conditions of
biological interest, in both air and water, we conclude
that it is indispensable to retain the contribution of
Twvwm to equation (1) if a physically accurate represen-
tation of hair motion is to be achieved.

(ii) The dependence of drag on flow oscillation frequency

To show the importance of retaining the frequency
dependence embedded in the coefficient G associated
with the drag force Fp, it is convenient to work with
the definition of the drag coefficient for a very long
straight cylinder (L/d> 1) in the perpendicular flow
orientation as given by Panton (1984),

Co = Fpld|(1/2 p V}?). (18)

Substitution of equation (6) for Fp into equation (18)
yields

CD(SlOkes) = IGTEG/RK (183.)

for the case of an oscillating flow. In contrast, for a
steady Oseen flow (White 1991) gives

CD(Oseen) =

(16x/Re) (12 — 0.577 + In (16/Re)) . (18b)

The quantity G in equation (18a) is given by equation
(10). It is a function of g, given by equation (9), which
can be rewritten as

g=0.577 + 1/2 In(Re St/4). (9a)

In equation (9a) St=cw d/2/V, is the Strouhal number
of the cylinder which, like Re, is based on the velocity
of the fluid relative to that of the cylinder. Thus,
CD(Stokes) :f(Re,St) while CD(Oseen) =f(Re) .

Figure 5 shows plots of these two coefficients as a
function of St for Re=0.02 and 0.002, respectively.
The results illustrate that: (i) for any St>0, the
difference between these two drag coefficients in-
creases as Re decreases, (ii) for very small non-zero
values of St, the values of these two coefficients
approach the same limit. For the hairs and flow
conditions of interest here and in Shimozawa &
Kanou (1984) we find the following approximate
ranges for St and Re: 0.1<St<1.0 and 0.001<
Re<0.02. For St=1.0 and Re=0.002 an Oseen flow
assumption would incur an error of about 509, in the
Cp coefficient and, hence, in the magnitude of the
associated drag force. The corresponding error for
Re=0.02 is similar. Therefore, except for St<1, the
assumption of a steady Oseen flow relation is unjusti-
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Figure 5. Plots of the drag coefficient (Cp) for cylinders in
oscillating Stokes flow and steady Oseen flow, Cpseokesy and
Cp(oscen) 10 the text, as functions of the Strouhal number (St)

for two values of the Reynolds number: Re=0.002 and
Re=0.02.

fied for calculating the drag force on a filiform hair in
an oscillating flow field.

(iii) Relative importance of the torques affecting hair motion

To establish the relative importance of all the
torques affecting hair motion, it is instructive to recast
equation (13) in dimensionless form. We do this for a
straight hair in order to obtain a general result. Define
Lg=I+I; and R.g= R+ Ry, and use @~ to scale time,
L= L, to scale linear dimensions, the imposed oscillat-
ing air flow amplitude (U,) to scale linear velocity,
and the quantity U,/L o to scale the angular dimen-
sions in 6, 6, and 6. The result is

. Ry . s
* © * 0% =

0 +Ieﬂw6 +Ieﬁw2

dnu G L? o . o u G L3 L .

———\(\Venpdy)— ——— | Ve ndn ), (19
T <£ LR B oy gm n) (19)

where = !//L’ Ll* = ljl/L’ V; = VF/“[]o’ l’/l:= = VF/
(0U,), 8* =0 L o|U,, 0% = 0 L|U,, 0* = (0 L)/(e0
U,), with dimensionless time in the differentiated
terms taken as T = wt.

Equation (19) reveals that, in general, the notion of
an oscillating hair is characterized by the following
four dimensionless groups:

. Gr = Reg/Lr 0, G, = S/lg o,

The scaling used to obtain equation (19) ensures that
the quantities which the dimensionless groups respec-
tively multiply are all of order unity. Thus, an
evaluation of the magnitudes of the dimensionless
groups respectively associated with these terms will
establish their relative importance. Figure 6 provides
such a comparison as a function of frequency for a
typical filiform hair and flow conditions. (In the
calculations we have set R=0 since this quantity is not
yet known. We later find that the value of R is of the
order of R; and Rj so that taking R=0 does not affect
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Figure 6. Plots of the dimensionless groups in equation (19)
as functions of frequency with Up=5 mm s~! for a straight
solid hair with d=7pm, L;=500pum, S=4x10"%2
Nmrad-! and R=0. Gg, solid line; Gs, dotted line; Gp,
dashed line; Gy, dot-dashed line.

the order of magnitude of Gr.) Contrary to the
assumptions made by Fletcher (1978) and Shimozawa
& Kanou (1984), these results show that over the
biological range of frequencies (f=10-500 Hz) none
of the terms in equation (19) is negligible relative to
the rest and all must be accounted for in an accurate
analysis of hair motion.

3. MODELLING AIR FLOW PAST THE HAIR
SUBSTRATE

The solution of equation (13) requires expressions for
the components of air velocity and acceleration affect-
ing hair motion. To find these quantities it is necessary
to solve for the flow field oscillating about the fixed
cylindrical substrate (the spider leg or cricket cercus)
supporting the hair. We tacitly assume that this flow
field is not affected by the presence of the filiform hairs
projecting from the substrate. However, to be consis-
tent with the conditions allowing the use of equations
(6,7) and (11,12) for Fp and Fyuy, one must ask if the
hairs in a cluster are sufficiently separated that they
do not interact through mutually induced viscous
motions. For trichobothria clusters, it can be shown
that a non-interacting-hairs assumption is reasonable
if the dimensionless distance a/d between trichobothria

(20)

is larger than the smallest of the pair {L/d, Re~1}. For
the trichobothria of Cupiennius salei Barth et al. (1993)
find the following, approximate, ranges: 10<a/d
<100, 20 < L/d < 100 and 100 < Re~! < 1000. We must
conclude from these values that hair-to-hair interac-
tions in Cupiennius are probably not negligible, espe-
cially in compact trichobothria clusters with a/d < 20.
However, analysis including
mutually induced viscous motions would be very

a . more accurate

laborious to perform and one must ask if the effort is
worth the reward. We eschew such an approach since
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careful testing of the present model, discussed below
and in Barth ¢t al. (1993), shows that it accounts for all
major qualitative observations and for most, if not all,
quantitative observations of the motions of single hairs
documented in the literature.

With the air flow field known everywhere as a
function of position and time, it is possible to obtain
the relative velocities and accelerations perpendicular
and parallel to the respective hair segments, L; and Ls.
In both cases of interest, shown in figures 2 and 3, the
far field velocity is given by U, sin (w?) denoting an
oscillatory motion with zero mean net flow in the
oscillation direction, and substrate curvature affects
the values of the air velocity components near the
substrate. On the substrate itself, the zero-velocity or
‘no-slip’ boundary condition applies.

Henceforth, in this communication, the substrate—
air flow relative orientation shown in figure 2 will be
referred to as the ‘parallel flow’ orientation, while that
shown in figure 3 will be referred to as the ‘perpendicu-
lar flow’ orientation. For the parallel flow orientation
we expect the radial () and the circumferential (V)
velocity components to be U= V=0 and the longitudi-
nal component (W) to be of the general form

W = fi(R,T; Res,Sis). 21)

In contrast, for the perpendicular flow orientation we
expect the longitudinal component of velocity to be
W =0 and the radial and circumferential components
to be of the general form

U =ﬁ(R: @’T; ReSaStS) 5 (22&)

V = f3(R,0,7; Res,Sts). (22b)

In these equations the physical components of air
velocity (4,»,w) have been non-dimensionalized accord-
ingto U = u/U,, V =v|U,, and W = w/U,. The quanti-
ties

D2 U, _wDJ2

and Sts = U

Res =

are the Reynolds and Strouhal numbers of the
cylindrical substrate, respectively. They are the only
dimensionless parameters required to completely char-
acterize the velocity distributions of air oscillating
parallel to, or perpendicular to, a smooth fixed
cylinder of effective diameter D. The quantity R=
r/D|2, not to be confused in the present context of
writing with the damping constant R in equation (1),
is the radial coordinate location along a direction
perpendicular to the substrate, non-dimensionalized
by the effective radius of the substrate. In equations
(22a,6), O denotes the angular or circumferential
coordinate dependence of U and V, respectively, for
the perpendicular flow orientation. For this configu-
ration the convention is that at the start of an
oscillation cycle @=0° along the symmetry plane that
divides the flow approaching the cylinder surface,
while ®=180° lies in the prolongation of this plane
diametrically through the cylinder. From then on
these angular positions are fixed, regardless of the flow
reversals that occur in the oscillation cycles. As in
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equation (19), the quantity t=w! is dimensionless
time.

Completely general steady-periodic solutions of
the type expressed abstractly by equations (21) and
(22a,b) can be derived analytically and are relatively
easy to evaluate numerically. These are discussed
below.

(a) Air motion parallel to the substrate axis

This is the flow configuration shown in figure 2, in
which the fluid oscillates parallel to the longitudinal
axis of the cylindrical substrate. The substrate is
assumed to be long enough for end effects to be
ignored and U=0 and V'=0. The equation governing
the dimensionless longitudinal component of air velo-
city, W(R,), is

S ow 10P 1120 ow

ts"a?*ia_zzk—esﬁﬁ<R5E>’ (23)
where 7t and R are defined above, Z = z(D/2) and P
is the non-dimensional pressure, given by P = p/(1/2
pUZ). The solution of this equation, subject to the
boundary conditions that W =0 at R=1 and W —
U, sin(wt) as R— o0, can be obtained as the sum of
two parts, the first being a potential flow solution and
the second being a viscous flow solution. The result is

W(R,wt) =

sin(t) + REAL [i (Ko (AR)[K, (A)) €9, (24)

12 45 a

In this equation the quantity A = (¢ ResSis)
known parameter and the remaining symbols have
already been defined. From equation (24) it is clear
that the W velocity field for this configuration is
completely determined by the dimensionless para-
meters Res and Sis, through the quantity A.

Inspection of equation (24) shows that substrate
curvature affects the shape and magnitude of W
through the term K, (AR)/K, (A). Writing R=1 +
y/D[2), with y taken as the distance from the surface
of the cylindrical substrate to the radial position of
interest in the flow, and considering the case when
A> 1 (meaning that Res Sts > 1 which is a limit of
biological interest), the approximation K,(X) =
e~ %/(2xX)'? applies, where X is a dummy variable.
For these conditions equation (24) reduces to

sin(wt — By)e=#
(1 +y/(Dj2))"”

Equation (25) is identical to Stokes’ (1851) analytical
result for a flat surface, equation (16), in the limit
when y/(D[2) — 0. However, as long as Res Sts > 1 the
rate of exponential damping of velocity in equation
(25) exceeds that due to the (1 + y/(D/2))*? term and
Stokes’ (1851) result is expected to provide a good
approximation for velocity at all values of y/(D/2). We
now establish what is meant in practice by Reg Sts > 1.

Figure 7a—¢ provides comparisons among air velocity
profiles calculated for the parallel and perpendicular
flow orientations. Also included are the profiles for a
flat substrate assuming viscous and inviscid flows,

W(y,t) ~ sin (wf) — (25)
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Figure 7. (a) Velocity profiles calculated at the same instant
in time (wt=1) in a cycle for air oscillating at f=100 Hz
past a cylindrical substrate with D=2 mm (ResSts =40).
Four cases shown: u=V (air motion perpendicular to the
cylindrical substrate) (solid line); u= W (air motion parallel
to the cylindrical substrate) (dotted line); u= Vs, (air motion
parallel to a flat substrate, viscous flow) (dashed line); u= U
(air motion parallel to a flat substrate, inviscid flow) (dot-
dashed line). (b) Velocity profiles calculated at the same
instant in time in a cycle for air oscillating at f=100 Hz past
a cylindrical substrate with D=1mm (ResSts=10). The
four cases shown correspond to those in (a). (¢) Velocity
profiles calculated at the same instant in time in a cycle for
air oscillating at f=100 Hz past a cylindrical substrate with
D=0.2mm (ResSts=0.4). The three cases shown corres-
pond to those in (a). The absence of the u= V profile reflects
that Wang’s (1968) theory does not rigorously apply for
RES Sts < 1.
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respectively. All the results correspond to developed
periodic flow at the same instant in time in an
oscillation cycle, namely w¢= 1. The calculation
conditions listed are all biologically relevant. It is the
comparison between the u = Vg, profiles, obtained
from equation (16), and the curvature-affected longi-
tudinal u = W profiles, obtained from equation (24),
which interests us here. For Reg St = 40 (figure 7q)
the two profiles are essentially the same at all times in
a cycle. For Res Sts = 10 (figure 75) differences begin
to appear which become quite significant (in excess of
1009% at y/(D/2) =1) by the time ResSis= 0.40
(figure 7¢). These results allow us to refine the
theoretical finding of the previous paragraph by
taking Reg St > 10 as the condition for Stokes’ (1851)
flat substrate analysis to provide a good approxima-
tion for the flow oscillating parallel to a cylindrical
surface. In terms of the variables defining Reg and Sts,
this condition translates to f D2/v > 20/

(b) Air motion perpendicular to the substrate axis

This is the flow configuration shown in figure 3, in
which the fluid oscillates perpendicular to the longi-
tudinal axis of the substrate. As in the case of the
parallel flow orientation, the substrate is assumed to
be long enough for end effects to be ignored and
W = 0. Cylinders in oscillating cross-flows have been
extensively investigated in the fluid mechanics litera-
ture (Telionis 1981) and the theoretical study by
Wang (1968) is especially relevant here. By means of
the method of inner and outer expansions this author
obtained an analytical expression for the streamfunc-
tion of the instantaneous flow field at low Reynolds
numbers. From this we have in turn derived an
expression for the instantaneous circumferential velo-
city component, V= V(R,0,t), given as equation
(A2.1) in Appendix 2. Although formidable in
appearance, this expression is straightforward to
evaluate numerically.

As expected, the perpendicular flow orientation is
also completely determined by the dimensionless para-
meters Reg and Sts. Figure 8, based on Wang’s (1968)
work for this configuration, shows four régimes of
applicability of various fluid mechanic theories. The
choice of theory depends on the particular values of
Reg and St for the cylinder. The figure provides values
of Reynolds—Strouhal number pairs typical of filiform
hairs and the substrates supporting them, respectively.
By virtue of the regions into which the figure is
subdivided, with the Reynolds and Strouhal numbers
known for a particular cylinder-fluid pair, it is possible
to establish the type of motion that arises as well as the
simplifications allowed by the momentum equations
describing that motion.

In general, the result of the interaction between an
oscillating viscous flow and a circular cylinder perpen-
dicular to that flow is the generation of a steady (in
the mean) streaming motion superimposed on the
unsteady component of motion. For values of Reg
Sty < O(1), where the symbol ‘O’ denotes ‘order of
magnitude’, the unsteady component of motion (spe-
cifically, the vorticity) is not confined to a boundary
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layer immediately around the cylinder, but, instead,
diffuses throughout the entire flow field. This flow
régime can be further subdivided in two, according to
whether inertial terms are (C) or are not (D) retained
in a theoretical formulation. In the triangular region
denoted (D-C) in the figure, the theories applicable to
régimes (D) and (C) overlap.

When Reg Sts > O(1) the unsteady component of

V(y,t) ~ sin(wt) [1 + 1/(1 + 2 y/(D/2))] — sin(wt —

vorticity decays exponentially outside an unsteady
boundary layer with thickness of O(Reg St5) ~*2. If, in
addition, Reg/Sts < O(1) (denoted as régime B, where
the theory of Wang (1968) applies) the outer steady
flow field is described by Stokes’ (1851) theory. If]
instead, Res/Sts > O(1) (denoted as régime A) a
second steady boundary layer of O(Res/Sts) ~*? arises
beyond which the steady component of vorticity
decays exponentially. The steady component of velo-
city, if it exists, is potential outside this second
boundary layer.

Wang’s (1968) analysis clarifies the influence of
curvature terms in the equations describing both the
unsteady and steady components of motion. These
terms are of O(ResSts) ™2, so that when Res[Sis <
O(1) (régimes B, C and D) it is necessary to retain
their influence. Numerical calculations show that
while the neglect of curvature terms does not seriously
affect the prediction of the frequency response of
filiform hairs to flow oscillations, it does lead to serious
underpredictions of the magnitudes of hair displace-
ment, velocity and acceleration, respectively. This is a
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Reynolds (R)

1072

1073

104

1073 107t 1 10 102 10°
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Figure 8. Map placement of Reynolds-Strouhal number
pairs typical of cylindrical hairs (squares) and correspond-
ing cylindrical substrate supports (circles) for air motions
oscillating perpendicular to the substrate axis with
U,=5mms~?! and frequencies ranging from 50 to 500 Hz.
The regimes of applicability of the different theories are: (A)
two boundary layers (Riley 1965 & Stuart 1966); (B) one
boundary layer (Holtsmark et al. 1954; Wang 1968); (C) no
boundary layer, inertia terms retained (Rayleigh 1883;
Holtsmark et al. 1954; Lane 1955); (D) no boudary layer,
inertia terms neglected (Stokes 1851); (D-C) overlap régime
where (D) and (C) theories apply.
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most important finding since it is known that the
frequency at which action potentials are generated at
the base of a filiform hair depends in a complex way
on the magnitudes of these quantities in addition to
hair oscillation frequency (Rei8land & Gorner 1985).

For Res Sts > 1, taking the first two terms from the
binomial expansion for (1 + y/(D/2))?, equation (A 2.1)
in Appendix 2 reduces to

By) e~ [2 — /2 9/(D[2) + 3/24/2 (y/(D[2))?].

Itis clear from this expression that the y-variation of the
velocity profile for perpendicular flow is very different
from its counterpart for parallel flow, given by equation
(25). Further, in the limit when y/(D/2) — 0 equation
(26) yields

V(y,t) ~ 2 [sin(wt) — sin(wt — By)e™#].

(26)

(27)

Contrary to equation (25), the factor of 2 in equation
(27) precludes its reduction to equation (16), even in
the limit when y/(D/2) — 0 for which we might expect
Stokes’ (1851) flat substrate solution to apply. It is
clear that there exists a fundamental, curvature-
dependent difference between the flow oscillating
parallel to a cylindrical substrate and the same flow
oscillating perpendicular to it. The magnitude of the
difference is clearly reflected in the respective numeri-
cal evaluations of the two velocity profiles.

Figure 74,b show u = V component velocity profiles
for air motion in perpendicular flow, calculated using
Equation (A 2.1) for the same conditions as the other
profiles. A comparison with the corresponding u = Vg,
profiles shows that the flat substrate analysis is a very
poor approximation for the curved substrate result.
Also evident are the large differences in magnitude
between the velocity profiles for parallel and perpen-
dicular flow orientations which, per force, translate
into proportionately large differences in the corres-
ponding magnitudes for hair displacement, velocity
and acceleration, respectively. Both the V- and W-
velocity profiles in figure 74,6 demonstrate the thin-
ning of the boundary layer region with increasing
Reg St5, but with much steeper gradients in velocity
(due to curvature effects) in the case of the perpen-
dicular flow orientation. Finally, while steady stream-
ing is expected to be negligibly small in the case of
filiform hairs (small S¢), in principle it can contribute
significantly to the flows around spider legs and
cricket cerci (large St5) and, therefore, to the net drag
on the hairs they support. This is yet another feature
not captured by Stokes’ (1851) solution for a flat
substrate, which equation (A 2.1) retains.

(¢) Experimental verification of analytical
expressions for velocity

The accuracy of equations (24) and (A 2.1) for the
parallel and perpendicular flow orientations, respec-
tively, was verified by reference to measurements
obtained with a laser-Doppler velocimeter. The ex-
perimental procedure and a comparison between the
measured and analytical velocity profiles are given in
Barth et al. (1993). Briefly, measurements of the
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maximum velocity in an oscillation cycle were
obtained as a function of distance normal to the
substrate consisting of a Cupiennius spider leg. The
experiments were performed in a cylindrical chamber
fixed with two loudspeakers operating in ‘push-pull’
mode to induce flow oscillations directed along the
longitudinal (horizontal) axis of the chamber. For
both the parallel and perpendicular flow orientations,
the flow oscillation frequency and. the magnitude of
the free stream velocity were examined at two levels,
to cover the ranges 10Hz < f< 150Hz and
15mms~' < U, < 60mms~'. The comparison be-
tween the measurements and analytical predictions of
velocity was very good, with the minor discrepancies
observed explainable in terms of the finite length of
the experimental substrate and some unavoidable
measurement uncertainty.

4. NUMERICAL SOLUTION METHODOLOGY

The general form of the equation to be solved,
equation (13), can be written as

6+a0+b60=c (28)

This second order inhomogeneous ordinary differen-
tial equation can be reduced to an equivalent system
of two first order ordinary differential equations of the

type

0=p, (29)
and
p=—ap—5b0+c (30)

which must be solved subject to the initial conditions
that 6 =0 and 0 =0 at ¢=0. However, the com-
plexity of the terms in these equations renders too
cumbersome their analytical solution and we have
chosen a numerical approach. For this we have
employed a fourth order Runge-Kutta method with
an adaptive stepsize algorithm especially suited to
solve this type of initial value problem (see Press et al.
1986). The torque calculations for 7}, and Ty were
also performed numerically using the trapezoidal rule.

A computer code was written in the FORTRAN
programming language to perform the numerical
calculations. (The code is available from the first
author upon request.) Among the initial data required
by the code are the geometrical and physical details of
the hairs, and the flow field information in terms of
U, the substrate—air flow relative orientation and the
frequency range of interest. The code calculates hair
displacement, angular velocity and acceleration as
functions of time, and their respective steady-periodic
amplitudes as functions of the forcing frequency. The
code also calculates the phase difference between the
motions of any two hairs, or between a hair and the air,
as a function of the forcing frequency. It can perform
these calculations for the configurations shown in
figures 2 and 3, as well as for the flow oscillating along
a flat substrate. Situations where the physical proper-
ties of the hairs have some inherent non-linear depen-
dence on angular displacement, velocity or accela-
ration can also be readily simulated. For the
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perpendicular flow orientation it is straighfforward to
calculate flow fields and hair motions for hairs at @
locations other than the & = 90° case studied here.

The steady-periodic amplitudes of displacement,
velocity and acceleration are obtained by comparing
two consecutive peaks of displacement as a function of
time. The criterion for attaining a steady-periodic
solution is that the difference between peaks should be
less than 19%,. The phase difference between two hairs
is obtained by taking the product of the angular forcing
frequency with the difference in the times at which the
displacement of the two hairs achieve their respective
maxima.

5. A METHOD FOR DETERMINING THE
PHYSICAL CONSTANTS S AND R

To solve equation (13) it is necessary to prescribe
values for the torsional restoring constant, S, and the
damping constant, R. These physical quantities are
inherent to the hair and both are due to its mechani-
cal connection to the substrate. In the case of S there is
no ambiguity concerning this point. In the case of R,
one must emphasize the difference between damping
due to the mechanical attachment of the hair to the
substrate (which explains the need for R) and damp-
ing by the viscous action of the air on the hair,
accounted for separately by terms R, and R, in
equation (13).

The only direct measurements known to us for the
torsional restoring constant are the static force
measurements of Shimozawa & Kanou (1984) for the
filiform hairs of crickets yielding values ranging from
§=0.21 x 107N m rad ~*fora hairwithd = 0.9 pm
and L; = 100 pm to $=8.5 x 102N mrad ! for a
hair with d = 4 pm and L; = 1000 pm. In contrast, it
appears that the damping constant, R, has never been
measured, directly or indirectly. Kdmper & Klein-
dienst (1990) give experimental plots of cricket fili-
form hair maximum displacement, 6,,,, and of the
phase difference between hair displacement and air
velocity, A®, as a function of frequency f. Some of
their data are reproduced in figure 94,6 and we have
considered how they might be used to derive values
for S and R.

The theoretical analyses of §§ 3a,b, respectively
leading to equations (25) and (27), show that for Reg
Sts > 10 (in practice meaning f> 100 Hz for the
cercus of figure 94,b) a general expression for the air
velocity profile seen by the bulk of a hair projecting
from a cylindrical substrate can be written as

Ve = A(w,y) sin(wt). (31)

While the form of 4(w,y) significantly affects the value
of 8 and, hence, 6,,,, it does not significantly affect
the value of A@. Thus, for an analysis principally
aimed at evaluating A@, we ignore the y-dependence
of V,; in equation (31) and can take

Vair = Uo Sin(wl)) (32)

where U is a constant. Substituting this expression for
air velocity into equation (13) and solving the result-
ing equation (with L, = 0 to model the straight hair of
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Figure 9. (a) Measured and calculated phase difference
(A®D) between hair displacement and far field air velocity
plotted as a function of frequency for a straight solid hair
with L; =1050 pm and d=>5 pm projecting from a cylindri-
cal substrate. Experimental data are from Kimper &
Kleindienst (1990) for an air flow with U,=6 mms-1
Circles, data at 925 pm; triangles, data at 575 um. The
analytical result (solid line), based on equation (34),
assumes a flat substrate and neglects viscous damping of the
air motion by the substrate. The numerical results, based on
equation (13), account for viscous damping of the air
motion by a cylindrical substrate with D= 1.0 mm. Numeri-
cal solutions for the parallel substrate—air flow orientation
with U,=6 mm s~! (dashed line) and U,=12 mms~! (dot-
ted line), respectively, virtually coincide. (b)) Measured and
calculated hair maximum displacement (0max) plotted as a
function of frequency for the conditions of (a).

figure 9a,b) yields the following analytical expressions
for the hair displacement, 0, and its phase shift, ¢
respectively

0 = B(w)sin(wt + ¢),

b

(33)

and

— tan-1 © (S— I+ L)o*\ [(S— (I+h) o®
¢ = tan [<1+4g (R+ R)w )/( R+ R)w
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The analytical expression obtained for B(®) is given
by equation (A 1.7) in Appendix 1.

A comparison between equations (32) and (33)
shows that the phase difference between the hair
displacement and the air velocity is A@ = ¢. Using the
experimental data for A@ versus f given in figure 9a,
one can choose a pair of A®@ (= ¢) and @ ( = 27 f)
values which, when substituted into equation (34),
yield two equations with two unknowns, § and R, as all
other quantities (/,/;,R;, and g) are calculable. Two
sets of experimental data were made available for 6,,,,
and A@, respectively. The set illustrated by circles in
the figures, which was measured at a distance 925 pm
from the base of the hair, and the set illustrated by
triangles, which was measured at a corresponding
distance of 575 pm. Because of the apparent depen-
dence of A® on measurement position along the hair,
in our procedure we averaged the two values of A@
provided at each frequency and took these averages as
better statistical indicators of the variation of A® with
. Next, for every possible pair of (A@,w) falling above
/=100 Hz in figure 9a we calculated the correspond-
ing values of § and R using equation (34). For this we
set d =5 pum and L; = 1050 pm, corresponding to the
hair dimensions for the data provided. The results for §
and R were then averaged in turn, to yield final values
of §=2807 10"®Nmrad™' and R=22.20
10~ N msrad~!'. This value of S is roughly four
times that measured by Shimozawa & Kanou (1984)
for a hair with similar dimensions. Given that the
range of values for § measured by Shimozawa &
Kanou (1984) spans two decades, and given the
uncertainties affecting the measurements and pro-
cedures of both the experiments of Shimozawa &
Kanou (1984) and Kamper & Kleindienst (1990), the
factor of four between the two values of § seems
reasonable.

Using the values of § and R estimated from the data
of Kamper & Kleindienst (1990), equation (34) yields
an analytical curve for A@ as a function of f. The
result is shown in figure 9a where, as expected, good
agreement is found with the experimental data for
f > 80 Hz since this is where the present theoretical
analysis applies. For f < 80 Hz the measurements and
the analytical result differ significantly. To further
investigate this point, we solved equation (13) numeri-
cally, using the above values of § and R together with
the more accurate expression for the air velocity
profile given by equation (24) for a parallel flow
orientation as, in principle, this was the substrate-air
flow relative orientation investigated by Kamper &
Kleindienst (1990).

In the numerical calculations we set D = 1.0 mm as
a reasonable effective substrate diameter after consul-
tation with Kamper. Results for A® and 6,,, were
then calculated with the far field velocity in equation
(24) set to U, =6 mms~!, the experimental condi-
tion. For this case, the A® profile shows much better

2]
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agreement with the corresponding measurements
when f< 80 Hz, indicating the importance of
accounting for the correct air velocity profile shape at
low frequencies. In contrast, while the analytical,
numerical and experimental resonance frequencies for
0ax (figure 9b) lie within less than 309, of one
another, both the analytically and numerically calcu-
lated magnitudes of 0,,,, differ by about 759, from the
experimental values at the measured resonance fre-
quency (f= 66 Hz). Numerical calculations show
that part of this difference can be reduced by
decreasing S. However, we suspect that a much larger
part of the difference is due to a departure in the
experiment from the parallel flow condition assumed
in the mathematical model. While it is true that the
orientation of the cercus and its support were parallel
to the flow direction in the experiment of Kamper &
Kleindienst (1990), in practice the cercus and its
support are truncated objects of finite length. Thus, in
reality the flow of air past these two objects must
accelerate in their vicinity, just as explained in § 36 for
the case of a flow oscillating perpendicular to a
cylindrical substrate. This effect is not captured by
equation (24) and leads to an underestimation of the
true air velocity near the substrate. To illustrate the
influence of this on 0,,,,, numerical calculations were
repeated with U, =12 mms~"' in the parallel flow
orientation. The results, plotted in figures 9a,b, show
that doubling the far field velocity substantially
improves the calculations of 0, without affecting the
agreement already obtained with A®.

To attempt to provide a better description of the
flow past a truncated substrate mounted on a finite
support was beyond the scope of this study. We note
that, as expected, both the analytical and numerical
calculation approaches produce resonance frequency
information that is not affected by inaccuracies in the
magnitudes or shapes of the air velocity profiles. In
contrast, correct calculations of the magnitudes of hair
displacement, velocity and acceleration require com-
plete and physically correct prescriptions of the air
velocity profiles.

At high frequencies equation (34) can be used to
check the consistency of measurements obtained for
A®, S and R. In future work, aimed at providing
experimental information for A® from which to
calculate § and R using equation (34), special atten-
tion should be paid to making the measurements for
the condition Reg St > 10 for the substrate. (In prac-
tice this translates to f> 100 Hz, approximately, for
filiform hairs on cricket cerci, and f> 10 Hz for
trichobothria on the legs of Cupiennius salei spiders.)
This is because for this condition only will the relative
orientation of the substrate with respect to the air
direction be immaterial for determining A®. Accurate
measurements for the diameters and lengths of the
hair substrate and its mechanical support are neces-
sary to calculate the correct shapes and magnitudes of
the air velocity profiles. Similarly, accurate measure-
ments for hair length, diameter and shape, for the air
oscillation frequency, and for the phase shift A® are
indispensable for the use of equation (34) to determine
S and R. In particular, A® should be measured as
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precisely as possible for values of A® > 45° since a
small error in this quantity translates into a large error
in tan(¢) and, therefore, in the values derived for §
and R. For example, assuming negligible uncertainties
in the values of f, 4 and L, in equation (34), we find
that the uncertainty in A® must be kept smaller than
+ 59, if the uncertainties in § and R are to remain
smaller than + 109, approximately. This is a rather
stringent requirement. For the data of Kimper &
Kleindienst (1990) at f= 176 Hz it translates into
+ 3°, corresponding to a maximum allowable uncer-
tainty in the measurement of time (from which A® is
determined) of approximately + 5107 %s.

6. CALCULATED RESULTS AND DISCUSSION:
PARAMETER DEPENDENCE OF HAIR
MOTION

In this section we present and discuss numerical
results calculated for several specific hair-substrate
dimensions and air flow conditions. Prior to using the
numerical model based on equation (13) to generate
these results, we performed extensive checks to verify
the goodness of the computer program encoding and
the physical model itself. For example, for identical
problem conditions we successfully compared the
results of a numerical calculation for the case of a
straight hair on a flat substrate with the corresponding
viscous flow solution given in Appendix 1. We also
verified that the automatic time-step adaptation
algorithm was capable of yielding accurate results
over the entire range of frequencies investigated.
Additional verifications and self-consistency tests, not
reported here but critical for verifying the goodness of
the numerical procedure, were conducted in the
course of this work.

Applying the methodology described in § 5 to the
experimental hair-air phase difference data of
Kamper & Kleindienst (1990), we obtained values for
§ and R appropriate to the filiform hair on a cricket
cercus. The same approach could be used to obtain
corresponding values of S and R for a trichobothrium
but, unfortunately, the phase data are not presently
available. For the calculation purposes of this section
we have preferred to set R =0 and have scaled the
data for § obtained by Shimozawa & Kanou (1984)
for the filiform hairs of crickets to yield a value of
S=4x 10" Nmrad~' which we consider to be
representative of spider trichobothria in both parallel
and perpendicular flow orientations. However, be-
cause this choice for the S and R pair is somewhat
arbitrary, we have performed an evaluation of the
sensitivity of calculations for 6, 6 and 0§ to changes in
these two physical constants. Additional calculations
and further discussion concerning the practical impor-
tance of specifying correct values for § and R are given
in the companion paper by Barth et al. (1993).

For all cases in the calculations to follow, the
amplitude of the far-field air flow oscillations was set
to U, = 5 mm s~ '. Therefore, any differences between
flow fields are due solely to substrate-air flow relative
orientation effects.
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Figure 10. Boundary layer thickness (§) as a function of
frequency for cylindrical substrates with D=2 mm in oscil-
lating air flows with U, =5 mm s~1; d,. (air motion perpen-
dicular to the substrate axis) (solid line); 8y, (air motion
parallel to the substrate axis) (dotted line); Js, (air motion
parallel to a flat substrate) (dashed line). The profiles for dpar
and Js, are virtually indistinguishable.

(a) Sensitivity to substrate-air flow relative
orientation

In §3 we discussed the effects of the cylindrical
substrate on the oscillatory motion of air for parallel
and perpendicular flow orientations. The main con-
clusions, substantiated by the profiles shown in figure
7a—c were that: (i) when Reg Sts > 10 the results from
Stokes’ (1851) flat substrate analysis approximate well
the flow oscillating parallel to a cylindrical surface;
(ii) the flat substrate analysis never applies to the flow
oscillating perpendicular to a cylindrical substrate;
and (iii) the magnitude of the velocity arising in the
vicinity of a cylindrical substrate for the case of
perpendicular flow is always significantly larger than
the corresponding value for parallel flow.

Figure 10 shows calculated boundary layer thick-
nesses for parallel and perpendicular flow orientations
for the frequency range 10 < f(Hz) < 500. As expected,
Stokes’ (1851) flat substrate result, given by equation
(17), is in excellent agreement with the numerically
derived result for parallel flow obtained using equation
(24). In contrast, the boundary layer thickness for the
case of perpendicular flow, based on equation (A 2.1), is
an order of magnitude larger than the value for parallel
flow over the entire range of frequencies. It is clear that,
of the two, the perpendicular orientation has a much
more pronounced effect on both the magnitude and
distribution of the flow past the substrate. For example,
at 200 Hz, a 1500 pm trichobothrium would protrude
significantly through the boundary layer of a parallel
flow but would remain entirely immersed within the
boundary layer of a perpendicular flow. Thus, for
present conditions involving perpendicular flow, it is
not atypical for even the longest hairs not to be exposed
to the uniform far-field motion and, instead, to
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experience strong variations in velocity which affects
their drag.

The sensitivity of the boundary layer thickness to
substrate—air flow relative orientation raises a serious
question concerning the validity of oversimplified
analyses based on the flat substrate assumption. Thus,
for example, we must reconsider the argument pro-
posed by Fletcher (1978) that, because s, &~ f~ 2 in
equation (17) for the flow oscillating along a flat
substrate: ‘Clearly for good response the hair receptor
must have a length L substantially greater than Js,.’
That this is not true for the trichobothria of Cupiennius
saler spiders is experimentally verified and discussed in
Barth et al. (1993).

To illustrate the substrate orientation effect on hair
motion, we have calculated the response of a straight
solid trichobothrium with d = 7 um and L; = 500 pm
to an air flow with U, = 5mms~"' in the frequency
range 50 < f(Hz) < 500, corresponding to 20 < Res
Stg < 200. For the substrate we took D =2 mm as a
characteristic value for the diameter of a Cupiennius
spider leg. Except for the low value of velocity used
here, these conditions are typical of those investigated
by Barth et al. (1993). Results for the maximum hair
deflection angle, angular velocity and angular accelera-
tion (0 a5 Qmax and émax) are plotted in figure 11a—c.
For each of these three quantities, the coincidence
between results calculated assuming a flat substrate and
a parallel flow orientation, respectively, is explained by
the close agreement in the corresponding air velocity
profiles (figure 74,b). For any of these three quantities,
the shapes of their profiles are similar irrespective of
substrate—air flow orientation. In particular, there is
virtually no difference between the maximum response
frequencies predicted for 0,,,, and 0_.. for the parallel
and perpendicular flow orientations. However, the
magnitudes of these quantities, and of émax, are always
larger (by about a factor of two, as expected from the
analysis in § 3b) for the case of perpendicular flow. The
conclusion is that, for otherwise identical conditions,
curvature-induced acceleration of the flow in the
perpendicular orientation works to deflect a hair
further and at a faster rate than in the parallel flow
orientation.

(b) Sensitivity to variations in S and R

The sensitivity of hair motion to variations in the §
and R parameters was investigated for a straight solid
hair with d = 7 um and L; = 500 pm. Results for 0,,,,,
Qmax and '@)max are plotted as a function of frequency
in figure 12a—¢ for three pairs of (S,R) values. Two
of these pairs had R=0 with =3 x 107" and
S=4x 107N mrad !, to investigate the S depen-
dence. The third pairhad R=1 x 10" Nmsrad "
and S=4x 10" Nmrad~' to investigate the R
dependence. The results are for a perpendicular flow
orientation and they reveal a significant dependence
of0..., 0. and 6, onboth S and R. For example, a
259, increase in § produces a decrease of 16%, in ,,,,.
More general, however, are the following observations.
With § fixed, increasing R decreases 0,,,,,, émax and émax
at all frequencies. With R fixed, increasing § also

max max
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Figure 11. Sensitivity of hair motion to substrate-air
flow relative orientation. (a) Plots of the maximum calcu-
lated displacement (f..,) of a straight solid hair as a
function of frequency for parallel (dashed line) and perpen-
dicular (solid line) substrate-air flow orientations and for a
flat substrate (dotted line). In the calculations: d=7 pm,
L;=500 pm, S=4x10"2Nmrad-!, R=0, D=2 mm and
U,=5mm ™. The parallel flow and flat substrate results
are virtually indistinguishable. (4) Plots of the maximum
calculated angular velocity (Om.x) for the same hair and flow
conditions of (a). (¢) Plots of the maximum calculated
angular acceleration (émax) for the same hair and flow
conditions of (a).
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Figure 12. Sensitivity of hair motion to values of the
torsional restoring constant, S, and the damping constant,
R, inherent to the hair. Solid line (A), R=
1x 10" Nmsrad-!, §=4x 102N m rad-!; dashed line
(B), R=0, S=4x 10" N m rad~%; dotted line (C), R=0,
S=3x10"2N mrad-'. (a) Plots of the maximum calcu-
lated displacement (Om.) of a straight solid hair as a
function of frequency. In the -calculations: d=7 pum,
L =500 pm, D=2 mm and U,=5 mm s~! for a perpendicu-
lar substrate—air flow orientation. () Plots of the maximum
calculated angular velocity (émax) for the same hair and flow
conditions of (a). (¢) Plots of the maximum calculated
angular acceleration (émﬂx) for the same hair and flow
conditions of (a).
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decreases these quantities but only up to a certain
frequency beyond which the effect is reversed. In the
present case, for the (§,R) pairs chosen, this occurs at
S~ 200 Hz.

The findings of this section illustrate the importance
of knowing correct values for both § and R in order to
predict the true magnitude and frequency character-
istics of hair motion. This point is discussed further in
Barth et al. (1993) in relation to the trichobothria
calculations presented there using values of S and R
determined from experiments. Because all qualitative
aspects of hair motion are correctly captured by
setting S=4x 107 Nmrad~* and R=0, the
remainder of the calculations in this study have been
performed using this pair of values.

(¢) Sensitivity to hair length and shape

Under this heading we have investigated the effects
of hair length and hair shape (straight or bent) on
hair motion. We have also looked at the dependence
of hair motion on the moment of inertia of the hair by
comparing the dynamical characteristics of solid and
hollow hairs for otherwise identical problem condi-
tions. The latter effect was so small that all the results
provided in the study have been for solid hairs. For
the bent hairs we have investigated the sensitivity to
flow direction by calculating parallel and perpendicu-
lar flow orientations. The sensitivity of hair motion to
the substrate—air flow relative orientation was already
examined in § 6a for a straight hair. Here it is the
additional effect of the bend in the hair that is of
interest when compared with the straight hair results.

Figure 13a—¢ shows calculated values of 0,,,,, Ooax
0., the hair to air displacement ratio (I") and the
phase difference between hair displacement and free
stream air velocity (A®) for the conditions indicated.
For a discussion of hair length effects we note the
profiles for 0, in figure 134 labelled A, B and C.
These correspond to straight hairs with L; = 250, 500
and 750 pm, respectively, in perpendicular flow. The
plots show that hair resonance frequency decreases,
and the maximum value of hair displacement in-
creases, with increasing hair length. Both of these
effects are in agreement with the experimental obser-
vations of Barth e al. (1993) and the numerical
calculations of Shimozawa & Kanou (1984). They are
due to the greater (total) moment of inertia and
increased drag of a long hair relative to a short one. It
is interesting that in the frequency range where the
0...x response of a long hair falls off, that due to a
shorter hair compensates. The same trends are
observed in the corresponding (')max and émax profiles
which, as expected, show higher values for their
resonance frequencies. From these findings we con-
clude that at low frequencies (/< 200 Hz, approxi-
mately, for the conditions calculated) long and middle
length hairs are good displacement and velocity
sensors, while at high frequencies (f > 200 Hz) mid-
dle length and short hairs are good velocity and
acceleration sensors. A related observation has been
made by Shimozawa & Kanou (1984).

Phil. Trans. R. Soc. Lond. B (1993)
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For a discussion on the effects of hair shape, we
consider the profiles labelled A and E in the figures.
Profile E corresponds to a hair with L; = 500 pm and
Ly = 250 pm, also in perpendicular flow. It is clear
that, relative to a straight hair of equivalent length,
the quantitative behavior of a bent hair in the same
flow is quite different. Even more pronounced is the
difference between the response of a bent hair in
perpendicular flow and that of the same hair in
parallel flow, profiles E and D respectively. In this
case, the shift observed in the resonance frequencies
for 0,,,, and 0., are due to the different moments of
inertia of these two identical hairs which oscillate in
very different planes (see figures 2 and 3). The
calculations show that bent hairs in perpendicular
flow are approximately twice as sensitive to the
displacement, velocity and acceleration of the air than
the same hairs in parallel flow.

The ratio of maximum hair tip displacement to the
corresponding free stream air element displacement,
I, is plotted in figure 134. This was evaluated as
I'= (0,,..L1)](U,/ow). The magnitude of this ratio and
the frequency at which it maximizes are seen to be
strong functions of the three parameters varied (hair
shape, hair length and substrate-air flow relative
orientation). From their respective analyses, both
Tautz (1977) and Fletcher (1978) concluded that I'
should be of order 2 for hairs oscillating near to their
undamped natural frequencies. In their experiments,
Kiamper & Kleindienst (1990) found 0.2 < I' < 2 with
the value of I' exceeding 2 in two cases. Present
calculations with the hair damping constant set to
R =0 and the dimensions and flow conditions shown
in the figure support the 0.2-2 range of variation in I
However, we find for the trichobothria in Barth et al.
(1993) that the upper limit of this range is reduced
when finite values of R are used in the calculations.

Although we have restricted present considerations
to the parallel and perpendicular flow orientations
shown in figures 2 and 3, it should be clear that bends
at the tips of trichobothria sensitize these hairs to
other flow directions, especially those approaching a
spider fromabove. In crickets, for example, directionally
independent sensitivity to air flow is guaranteed by
the presence of numerous straight filiform hairs cir-
cumferentially distributed around each cercus so that
there are always some hairs affected by air motion. In
contrast, in any cluster on a leg of a Cupiennius spider
the trichobothria are less in number and not circum-
ferentially distributed around the leg. Here it appears
that directionally-independent sensitivity to air flow
may be assisted by hair curvature. This point is
further discussed in the companion paper by Barth et
al. (1993).

(d) Phase shift between hairs in a cluster

Calculations were also performed to show the
dependence” of the phase difference between hair
displacement and air velocity, A®, on various para-
meters. Figure 13¢ provides results for the hairs and
conditions listed in figure 13a. The profiles for the
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Figure 13. Sensitivity of hair motion to hair length and shape for parallel and perpendicular substrate-air flow
orientations. Long-dashed line (A), perpendicular, L; =750 pm, L,=0; solid line (B), perpendicular, Z; =500 pm,
L,=0; dot-dashed line (C), perpendicular, L;=250 pm, L;=0; short-dashed line (D), parallel, L; =500 pm,
L,=250 pm; dotted line (E), perpendicular, L;=500pm, L,=250pum. In the calculations: d=7 pm,
§=4x10"2Nmrad~!, R=0, D=2mm and U,=5mms-'. (a) Plots of the maximum calculated displacements
(Omax) of the solid hairs as a function of frequency. (4) Plots of the maximum calculated angular velocity (fpa) for
the same hair and flow conditions of (a). (¢) Plots of the maximum calculated angular acceleration (émax) for the
same hair and flow conditions of (a). (4) Plots of the hair to air displacement ratio (I") for the same hair and flow
conditions of (a). (¢) Plots of the phase differences between hair location and air velocity (A®) for the same hair and
flow conditions of (a).

Phil. Trans. R. Soc. Lond. B (1993)
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straight hairs show that long hairs are more phase
delayed than short ones, in agreement with the
measurements of Kdmper & Kleindienst (1990).

Taking the difference, at a fixed frequency, between
any two pair of profiles in this figure yields the phase
difference in displacement between the corresponding
pair of hairs. Thus, for example, comparing the
profiles for the same bent hair in parallel (D) and
perpendicular (E) flows, we observe only a small
phase difference between the two. In contrast, the
calculations show large phase differences between
hairs of significantly different lengths for all frequen-
cies. This finding is of potential biological significance
since such phase differences among hairs in a cluster
can, in principle, significantly affect the pattern of
their combined action potentials.
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APPENDIX 1

Analysis of the motion of a straight cylindrical
hair oscillating about a point on a flat immobile
substrate due to an imposed periodic flow: viscous
and inviscid substrate flow solutions

The equation to be solved is equation (13) in the
text after setting L, = 0 and neglecting the second
term contributing to Fyy in equation (7). Thus, the
equation of interest is
(I+L) 6+ (R+R) O+50=

L mu G L
41rp.G£VFydy ngE[VFydy. (A1.1)

(1) Viscous flow analysis

For the fluid velocity required in equation (A 1.1)
we take equation (16) which corresponds to the
viscous oscillatory motion of a fluid adjacent to a flat,
immobile surface. However, to maintain a correspon-
dence with the work of Shimozawa & Kanou (1984),
instead of equation (16) we use the completely
equivalent expression employed by them. This is given
by

Vs, = v/U, = cos(wt) — cos(wt — By) e =%, (A 1.2)

where the symbols used have already been defined in
the text.

Noting that Vg =v cos 6 and that for 6 < 10° the
cos(0) - 1, from equation (A 1.2) Vy and its time
derivative, Vg, can be found. Substituting these quan-
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tities into equation (A 1.1), and reorganizing terms,
yields the result

LO+ R 0+ S0 =Pcos(wt) + Qsin(wt), (A1.3)
where
I=I+IL, R=R+R,
P=2xuGU, L} A— (x*uG ULZ2) B,
Q=2nuGU,L}B+ (v*uG UL} |2) 4,
with
A=e [ — (1/BLy) cos( — BLy)
= (1/BLy + 1/(BLy)?) sin( — BLy)] — 1,

and
B = e Pl [(1/BLy) sin( — BL,)

= (1/BLy + 1/(BLy)?) cos( — BLy)] + 1/(BLy)>.

The steady-peroidic solution of equation (A 1.3) is
0 = C; cos(wt) + Cysin(wt), (A1.4)
with the constants C; and C; given by

P (S — Lw?) — QuR,

G = S TPt T (R
and

PwR + Q (S — La?)
Cz =

(S — La®)? + (wR)?’

With analytical expressions available for Vg, 8 and
their respective time derivatives, it is a straightforward

APPENDIX 2

Analytical solution for the @ component of velocity
Jor a viscous fluid oscillating perpendicular to an
tmmobile cylindrical substrate

Wang (1968), provides an analytical expression for
the stream function, ¥, for the flow oscillating perpen-

Phil. Trans. R. Soc. Lond. B (1993)
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matter to derive corresponding expressions for 7%y,
and Tp from the definitions given by equations (3)
and (4) in the text. The results are

2u GL} L BU,
Tym = mpCL {I: — —31 Cio — _Q{I cos(wt)
g

Ll AUD .
+| - E‘ Cow + —2— sin{wt) », (A 1.5)

AU,
— —2—:| cos(wt)

- %] sin(wt)}. (A 1.6)

(ii) Inviscid flow analysis

For the fluid velocity required in equation (A 1.1)
we now take U, cos(wt) for all values of y, which
corresponds to the inviscid oscillatory motion of a fluid
adjacent to a flat, immobile surface. The analytical
solution to this problem also requires solving equation
(A 1.3) where, now, 4 = 1 and B = 0 in the expressions
for P and Q. The expressions for I, and R, remain as
previously defined. The final steady-periodic solution
is given by equation (A 1.4) with the constants C; and
C, also as previously defined. To obtain the form of
B(w) required by equation (33) in the text we recast
equation (A 1.4) into that form to find

B(w) = \/(C? + C3). (A 1.7)

dicular to a fixed cylinder. For this configuration, the
circumferential velocity component, V, that is, the
component aligned in the @ direction, is the one
relevant to calculating hair motion. This component is
obtained by taking the radial derivative of the stream
function as follows
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Vo(R,®,00) = OY[0R (A2.1)
= (1 + 1/R?)sin® coswt + (RegSts) ~ 2 \/2/R2 sin@ (sinwt + coswt)
+ (ResSts) ! (1/R?) sin@® sinwt — 2 sin@ e —niy/2 cos(wt — n/\/Q

— (ResSts) ~ M2 sin@ e~ "V?2 {ﬁ [cos(@t — (n/</2)) + sin(@t — (1/</2))] — /2 71 cos(wt — 11/\/2))}

— (ResSts) "' sin@e ="V { — 1/4sin(wt — (n//2)) — (5/4/2) nlcos(wt — (n//2))

+ sin(wt — (/x/2))] + (3/2/2) ncos(wt — (n//2))}
+ (Sts) ~'sin2@{e " sin(20t — 1) + e~ "2 (//2) [cos(20t — (1/</2)) + sin(20¢ — (1//2))1}
— (ResSts) =2 sin@ (e~ "2/ /2) [cos(@t — (n]</2)) + sin(wt — (1/</2))]

+ (ResSts) " sin@e~"V2{ — 54 sin(wt — (n//2)) + (3/24/2) 1 [cos(wt — (n//2))
+ sin(wt — 11/\/2 I
— (St5) =1 sin2@ e " sin (20t — 11/\/2

— (Sts) ~*sin20 (3/2R?)
+ (St5) ' sin2@{1/2 e~ V2 4 e~ "V2[cos(n/y/2) + 5 sin(n//2)]}
where 7 = (ResSts)"? (R — 1) and R =1+ (y/(D/2)), respectively.
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